The crystal and molecular structure of 3-nitroperchlorylbenzene: Corrigendum. By Gus. J. Palenik, Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, Jerry Donohue, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, and K. N. Trueblood, Department of Chemistry, University of California, Los Angeles, California, U.S.A.
(Received 3 February 1969)
Correction to Acta Cryst. (1968). B24, 1139.

In a paper on the title compound (Palenik, Donohue \& Trueblood, 1968) acknowledgement of support of the National Science Foundation was inadvertently omitted.

Reference

Palenik, Gus J., Donohue, Jerry \& Trueblood K. N., (1968). Acta Cryst. B24, 1139.

Acta Cryst. (1969). B25, 1004
The crystal structure of samsonite, 2 Ag $_{2} \mathrm{~S} . \mathrm{MnS}_{\mathbf{~}} \mathbf{S b}_{2} \mathbf{S}_{3}$. By J. Hrušкová, Geological Survey, Prague 1, Hradební 9, Czechoslovakia, and V. Syneček, Institute of Solid State Physics, Czechoslovak Academy of Sciences, Prague 6, Cukrovarnická 10, Czechoslovakia
(Received 14 June 1968 and in revised form 24 December 1968)
The crystal structure of samsonite, $2 \mathrm{Ag}_{2} \mathrm{~S} . \mathrm{MnS} . \mathrm{Sb}_{2} \mathrm{~S}_{3}$, has been determined from three-dimensional X-ray data. The structure is characterized by the presence of SbS_{3} squat pyramids and slightly deformed MnS_{6} octahedra. It can be uniquely described as being built up of $\mathrm{S}-\mathrm{MnSbAg}_{2}$ tetrahedra which share corner atoms with neighbouring tetrahedra.

According to Bragg's classification (Bragg \& Claringbull, 1965) of sulphides, the mineral samsonite belongs to the group of compounds in which the metal atoms are incorporated in structures resembling the compounds of S , As, Sb , and Bi . We have undertaken the crystal-structure investigation of samsonite in an attempt to gain further data on the crystal chemistry of this complex group of minerals.
The first crystallographic data of samsonite were published by Werner \& Fraatz (1910) who found the monoclinic symmetry and axial ratio of this mineral. The singlecrystal X-ray diffraction investigation of Frondel (1941) led to the following lattice parameters: $a=10.31, b=8.07$, $c=6.62 \AA$ and the space group $P 2_{1} / n$. From density measurements he found two formula units ($Z=2$) in the unit cell.

Our investigation was carried out on a single crystal of samsonite from a collection of minerals in the National Museum in Prague (Coll. No 591). Small single-crystal fragments of an appropriate shape were used for taking the rotation and zero-layer Weissenberg photographs about three crystallographic axes as well as for taking equiinclination photographs about the [001] axis. All diffraction photographs were recorded with unfiltered Mo K radiation. Visually estimated intensities of reflexions were corrected for Lorentz and polarization factors and used for calculations of projections of the Patterson function along three crystallographic axes and of the Patterson-Harker sections ($x, \frac{1}{2}, z$) and ($\frac{1}{2}, y, \frac{1}{2}$). The interpretation of these syntheses led directly to the determination of the positions of the heavy atoms in the unit cell of samsonite. These positions served for the construction of projections of the minimum function along the [001] and [010] axes. The peaks in the latter syntheses were checked by consideration
of the reasonable packing of atoms in the unit cell of samsonite. This procedure enabled us to determine the sulphur atom positions. The first projections of electron density along the [001] and [010] axes were calculated with structure factors whose signs were already reliably determined from the heavy-atom positions. The agreement between the data of minimum and electron density projections was satisfactory. All atoms except Mn lie in general fourfold positions of the space group $P 2_{1} / n$. Manganese atoms lie in one of the four twofold positions of this group.

Approximate coordinates of atoms are listed in Table 1. Although these coordinates require further refinement they enable us to describe the general features of the crystal structure of samsonite. Fig. 1 shows the electron-density projection and its interpretation in terms of the atomic positions in one unit-cell of samsonite. The presence of two atomic polyhedra - the squat pyramids, SbS_{3}, and slightly deformed octahedra, MnS_{6}, - is the most characteristic feature of the crystal structure of samsonite. Although the small difference in the scattering powers of Sb and Ag does not permit the reliable distinction between these two kinds of atoms from diffraction data only, the appearance of the pyramidal SbS_{3} group indirectly indicates the correct fourfold positions occupied by the Sb atoms. The SbS_{3} group is a squat pyramid, with an Sb atom at the vertex and three sulphur atoms at an average distance of $2.4 \AA$ at the basal corners; this can be compared with the corresponding Sb-S distance in proustite, equal to $2 \cdot 44 \AA$ (Harker, 1936). The sulphur atoms forming the triangular base of one SbS_{3} pyramid lie in three different fourfold positions; their average separation is $3.6 \AA$.

The manganese atoms are situated in one of four twofold positions of the centres of symmetry within the octa-

Fig. 1. Electron density projection of one unit-cell of samsonite along the [010] axis. The schematical drawing shows both the conventional polyhedra of cations surrounded by anions and the polyhedra of anions surrounded by cations. The latter are shown for all three crystallographically different sulphur atoms.

Table 1. Positional parameters of atoms, in fractional coordinates

	x	y	z
	x	0.000	0.500
Mn	0.000	0.163	0.037
Sb	0.185	0.242	0.571
$\mathrm{Ag}(1)$	0.300	0.040	0.750
$\mathrm{Ag}(2)$	0.505	0.050	
$\mathrm{~S}(1)$	0.083	0.250	0.352
$\mathrm{~S}(2)$	0.980	0.150	0.840
$\mathrm{~S}(3)$	0.767	0.067	0.392

hedral groups of sulphur atoms. The sulphur atoms in the SbS_{3} pyramid belong to three different MnS_{6} octahedra. The MnS_{6} octahedra are thus built from three pairs of crystallographically different sulphur atoms surrounding the Mn atom at the centre of symmetry. The average Mn-S distance of $2.5 \AA$ in the somewhat distorted MnS_{6} octahedra can be compared with the corresponding distance of $2.6 \AA$ in alabandite (Wyckoff, 1921). The average S-S distance within one MnS_{6} octahedron is equal to $3.5 \AA$. The three-dimensional network formed by SbS_{3} groups sharing sulphur atoms with three different MnS_{6} groups is stabilized by $\mathrm{Ag}-\mathrm{S}$ links.

The $\mathrm{Ag}(1)$ atom resembles the Sb atom in its sulphur environment, with the somewhat larger $\mathrm{Ag}(1)-\mathrm{S}$ distance
of $2.6 \AA$ as compared with $2.4 \AA$ in the SbS_{3} pyramid. The sulphur atoms in the AgS_{3} group are again in three different fourfold positions. There is a still longer $\mathrm{Ag}-\mathrm{S}(3)$ bond, equal to $2.9 \AA$, to a deformed tetrahedron of sulphur atoms which completes the $\mathrm{Ag}(1)$ environment. The average $\mathrm{Ag}-\mathrm{S}$ distance is thus $2 \cdot 8 \AA$. The $\mathrm{Ag}(2)$ atoms make only two bonds with the $\mathrm{S}(1)-\mathrm{S}(2)$ atoms belonging to different MnS_{6} and SbS_{3} groups, with a $\mathrm{Ag}(2)-\mathrm{S}$ distance of $2.55 \AA$, and are thus more typical of this group of sulphides in their bonding. The polyhedra of cations surrounded by sulphur atoms are shown in the upper part of Fig. 1. The bonds between the central atoms and the sulphur atoms are indicated by solid lines and the edges of the polyhedra are shown by broken lines.

The detailed examination of the sulphur environment revealed an interesting characteristic of the structure of samsonite. Each of the three crystallographically different sulphur atoms is surrounded by one Mn , one Sb , and two Ag atoms resembling a deformed tetrahedron around each sulphur atom. The overall mean distance of nearest neighbours from the central sulphur atom, averaged over all three kinds of $\mathrm{S}-\mathrm{MnSbAg}_{2}$ group, is $2.5 \AA$. The same average distance of sulphur atom nearest-neighbours among themselves is $4 \cdot 1 \AA$. The structure of samsonite can be thus uniquely described as being built up of $\mathrm{S}-\mathrm{MnSbAg}_{2}$ tetra-
hedra which share corner atoms with neighbouring tetrahedra. The tetrahedra formed by cations surrounding the anions are shown in projection along the [010] direction in Fig. 1. Three of these tetrahedra, corresponding to crystallographically different central sulphur atoms, are drawn in this Figure. The sulphur atom links to their nearest cations are shown by solid lines and edges of the tetrahedra are marked by broken lines.

References

Bragg, W. L. \& Claringbull, G. F. (1965). Crystal Structures of Minerals, p. 45. London: Bell.
Frondel, C. (1941). Amer. Min. 26, 25.
Harker, D. (1936). J. Chem. Phys. 4, 381.
Werner, S. \& Fraatz (1910). Cbl. Miner. 331.
Wyckoff, R. W. G. (1921). Amer. J. Sci. 2, 239.

Acta Cryst. (1969). B25, 1006
On the unit-cell dimensions and space group of L-tyrosine and L-tryptophane. By B. Khawas and G. S. R.
Krishna Murti, Division of Agricultural Physics, Indian Agricultural Research Institute, New Delhi-12, India

(Received 4 November 1968)

The Debye-Scherrer patterns of L-tyrosine, α-amino- β-(p-hydroxyphenyl)propionic acid, and L-tryptophane, α-amino-3-indolepropionic acid, have been analysed. L-Tyrosine, crystallized from aqueous solution, is orthorhombic, space group Pnam, with eight molecules per unit cell of dimensions $a=13 \cdot 89, b=21 \cdot 08$ and $c=$ $5 \cdot 84_{2} \AA$. L-Tryptophane, crystallized from aqueous solution, is also orthorhombic, space group Pmmm, with eight molecules per unit cell of dimensions $a=16 \cdot 81, b=17 \cdot 90$ and $c=6 \cdot 90_{4} \AA$.

For the interpretation of X-ray diffraction photographs of animal materials like silk, keratin, proteins, etc. it is necessary to have a knowledge of the crystal structure of pure aminoacids. Bernal (1931) reported on the unit-cell dimensions of fifteen aminoacids; recently the dimorphism of DL-aspartic acid (Krishna Murti, Natarajan \& Deb, 1965) and the unit-cell dimensions and the space group of DL-tryptophane and DL- β-phenylalanine (Khawas \& Krishna Murti, 1968) have been determined. The data on the crystal structure of L-tyrosine and L-tryptophane has not been reported so far.

The compounds could not be obtained as good single crystals by the ordinary methods of crystallization so information regarding the structure of these compounds had to be obtained from powder patterns alone; these were taken on a Philips 11.48 cm camera with $\mathrm{Cu} K \alpha$ radiation.

The spacings of the reflexions were calculated from measurements of the distances between arcs of symmetrical pairs in the powder patterns to an accuracy of 0.1 mm . The patterns could not be indexed in terms of a unit cell of cubic, tetragonal or hexagonal symmetry. The patterns were then analysed by a modification (Krishna Murti et al., 1965) of Lipson's (1949) method.

L-Tyrosine

Pure L-tyrosine, obtained from the British Drug Houses Ltd., England, was crystallized from its aqueous solution, by evaporation at room temperature, in clusters of very fine needle-shaped crystals. The fibre pattern, about the fibre axis (Fig. 1), of such a bundle of crystals was also taken.

The values of the constants A, B and C from the analysis are found to be $0.00518,0.00225$ and 0.0293 respectively, where $A=1 / a^{2}, B=1 / b^{2}$ and $C=1 / c^{2}$. There is good agreement between the observed and calculated $Q\left(1 / d_{h k l}^{2}\right)$ values as shown in Table 1.

Table 1. Data on the powder pattern of L-tyrosine

	Spacing	$Q\left(1 / d_{h k L^{2}}\right)$		
Intensity*	observed	Observed	Calculated	Indices
\boldsymbol{m}	$6.583 \AA$	0.0231	0.0229	210
$v w$	6.237	0.0257	0.0254	130

